355

8 — The Tectonic Component
(Formerly the InDoor Operating System)

Question 8 How do we bring the benefits of InDoor spaces to our computers, tablets, and phones?
Answer 8 The InDoor Operating System

We can work around the vulnerabilities of popular operating systems so that
the components of QEI provide genuinely secure, manageable, usable, and private
space inside those systems. An even better solution for the long term will be to
exchange today’s vulnerable and cranky old operating system foundation for a
more reliable, secure, and manageable one, while keeping most of the familiar

user interface and application programming interfaces.

If we were into long titles, we might have called this chapter “The Operating System that
Understands Whether You Are Indoors or Outdoors.”

An operating system can either contribute to or detract from Quiet Enjoyment.

For starters, an operating system must obviously be reliable in order to contribute
to Quiet Enjoyment. Apple Computer illustrates this point. After Apple replaced its
old operating system with OS X - that is, it replaced the kernel with
its NextStep subsidiary’s Darwin variant of BSD Unix - the Apple
Macintosh suddenly became the most reliable personal computer on the
market. The Macintosh now tends not to crash. It just runs. BSD does
its job without complaining. And remarkably, it does that without intruding
upon the established Mac user interface.

What exactly makes the various Unix and Unix-like operating systems so solid
and reliable? For one thing they don’t use a rickety registry system, or
a DCOM-style application component foundation. And they wuse sound
memory management methods.

Stepping back, however, we might ask why they were built differently in
the first place. Instead of simply noting better memory management we might
ask what ac-counts for the fact that memory management was dealt with in a
superior way when architectural decisions were made.

An obvious answer presents itself. Unix was designed with the assumption that
many users would be using the computer at the same time. A famous remark
on the subject that has been attributed to Microsoft’s original Chief Software
Architect shows a difference in design philosophy: “One’s computer should be
as personal as one’s underwear.” (Let’s see...one computer for each member of
your family, each with a separate operating system license and office suite license...
we see where this is going...no wonder he’s been the world’s richest person.)

https://osmio.ch/InDoorOS

356 THE INDOOR OPERATING SYSTEM

Unix got its start when computers were too expensive not to share. When the as-
sumption is that many users, competent and incompetent, benign and malicious, using
simple applications and complex ones, will be trying to do things all at once with this
operating system, you tend to put robustness ahead of fancy features. Today the differ-
ence shows. Unix and its cousins are defensive. They handle all sorts of difficult and un-
anticipated situations gracefully, and keep on going in the face of adversity. Before we
talk about features, isn’t that where we want to start when we judge an operating system?

After the robust kernel was developed, the fancy features started to appear. Today
many Unix-like systems deliver the same bells and whistles as Windows.

When it comes to technology products, we tend to equate quality with currency —
the best are the ones that incorporate the latest technology. But in this respect, oper-
ating systems are different from other technology products. They're more like race
horses, whose capabilities have a lot to do with their heritage. The latest technology is
important, especially when it comes to things like driver support, but that stuff is easily
added, as a trainer can prepare a good horse for a new course. Changing a horse’s or an
operating system’s DNA to get better performance is a lot more difficult. Apple didn’t
try to make modifications to its old operating system, it simply replaced the existing Mac
OS foundation with a version of Unix, keeping as much of the user and programming
interface as possible. Apple replaced the new with the old.

Unix, Son of Sputnik

Unix actually got its inspiration from an operating system called Multics, which was a
joint project of MIT, Bell Labs, and General Electric. Multics itself came from MIT’s
Project Mac and CTSS, which in turn were direct progeny of the one project that is re-
sponsible for a huge portion of America’s technical competence.

That project was Sputnik.

Sputnik was of course not an American project, so let me explain.

My father was chairman of our town’s school committee on October 4, 1957, when
news of the launch of the Soviet Union's Sputnik satellite was splashed across the pages
of the Boston Traveler. That night he convened an emergency meeting of the commit-
tee that adjourned at three in the morning, having produced a set of plans for immedi-
ately pouring effort and resources into improving the town’s schools. That sort of thing
was repeated in cities and towns all around the United States, making Sputnik, more
than any other project, responsible for a rapid improvement in America’s schools even
while they were dealing with a huge baby boom.

Project Mac’s goal was to make computing resources widely available to remote users
with terminals. Ready access to those resources, the theory went, would help the U.S.
recapture the lead in space and regain its self-respect as the world’s technology leader.

The significance of that history is this: since Project Mac was launched in 1963, the
world’s best software architects, computer scientists, programmers, standards diplo-

QUIET ENJOYMENT 357

mats, and users have been hammering on a small set of related code bases, always with
the knowledge that the system is to be used by many users with diverse credentials, skills,
and intentions.

Multics, MULTiplexed Information and Computing Service, was way ahead of its
time. First presented as a design idea in 1965, made available in 1969, and with suitable
performance and reliability coming a few years later, it was able to run on a symmet-
ric multiprocessor; offered a hierarchical file system with access control on individual
files; mapped files into a paged, segmented virtual memory; was written in a high-level
language (PL/I); and provided dynamic inter-procedure linkage and memory (file)
sharing as the default mode of operation. Multics was the only general-purpose system
to be awarded a B2 security rating by the NSA.

One of the Multics developers from Bell Labs was Ken Thompson. That connection
and others explain the resemblance between Multics and its nephew, Unix.

Another operating system (niece?) developed by a partnership of the same orga-
nizations — MIT and General Electric — was GCOS. The GCOS family tree is much
sparser, showing few descendants. But GCOS had its own noteworthy design innova-
tions, many of which are directly relevant today when we talk about close control of the
authorizations of programs and the need for persistence as we tightly couple processes
implementing office facilities over the Internet. Those ideas were kept alive in KeyKOS,
a “persistent, pure capability operating system,” and its own descendant, EROS (the
Extremely Reliable Operating System) that runs on today’s Pentium processors.

All of these operating systems started with the premise that many people would si-
multaneously use the computer on which they were running.

Back to the Future

Surprise! With the Internet, everybody is using your computer! If your computer is as
personal as your underwear, then you have a lot of visitors in there. Better do something
about it. And that something had better be more than a firewall.

Your view of personal computing may include computers as office equipment used
by your employees. As we have pointed out, you don’t have to take the plunge into
telecommuting, with its open-ended tunnels, to expose your corporate information to
outsiders. Wireless access points are proliferating like mushrooms in your network right
now, provided innocently by workers who just want easy access as they move around and
who have no idea of the vulnerabilities they are opening as they sneak a wireless access
point under their desk.

Full-blown Unix is not really a personal computer operating system. But BSD and
GNU (the progenitor of the Linux kernel) both offer a sound adaptation of the Unix
approach, configured for personal computers and for tablets and phones. While An-
droid is the best known Linux derivative for wallet-size devices, there are many others.
There are even wristwatches that run Linux!

358 THE INDOOR OPERATING SYSTEM

If we treat our Unix/BSD/Linux information appliances as disconnected islands, or
as old-fashioned clients on a friendly, secure, isolated client-server network, then they
are no better than more common personal computer operating systems. Let’s face it,
your PC and tablet and phone are now on the highway. They’re right there on the me-
dian, or the break down lane, or the rest area parking lot — wide open, outdoors, there
for the whole world.

Something must be done. Here’s what Gartner has to say 77:

Mobility is not an add-on to existing architectures: It is a profound disruption. Enter-
prises that ignore the impact of mobility on their software architectures are setting
themselves up for accelerating software maintenance costs.

In all the generations of IT architecture to date, there has been one constant —the en-
tities that are linked by the architectures are computers. Mobility creates new rules —
now the architecture must link the users of the systems. Of course, we always talked
about users, but in practice the computers stood as proxies for the users. In a world
where | have multiple devices, with very different capabilities, and | wish to move
seamlessly from performing functions on one device to performing functions on
another, how do the systems react? By logging me off one machine because | have
logged on somewhere else (such as my cellular phone)? By breaking my connection
and freezing my applications because | have moved between a wireless LAN and a
cellular service? By sending me a 1,024x768 display complete with scroll bars so |
can view all of it on my handheld device 320x200 pixels at a time?

Mobility and device diversity require a new layer in the architecture. Worst of all, the
"enterprise architecture" now becomes hopelessly "polluted," since it spans enter-
prise systems, carriers and devices that the enterprise does not control.

Mobile device support is just one indicator of the emerging challenge of new de-
vice types (fixed devices embedded in control systems ranging from domestic to
industrial, Internet appliances employing non-PC designs, and even variability in the
designs of the PC). It is not feasible to accommodate this variety by assuming either
that devices can mask the variability and call standard server interfaces, or that serv-
er-side systems can deliver output targets for each device type. The management of
the interaction becomes an identifiable element alongside client and server at the
highest level of system architecture."

Let’s look at JetBlue, gaining profits and market share in, of all things, the airline indus-
try. As every manager knows, employee morale comes from having everyone concentrat-

77 “The Impact of Mobility on Enterprise Architectures,” from Be Connected, a Gartner/PC Connection news-
letter, Volume 9, Issue 3 (September 17, 2002). Quote is from Gartner's Strategy & Tactics/Trends & Direction;
Note: COM-16-7718, July 2002, S. Hayward.

QUIET ENJOYMENT 359

ed in physical facilities so they can get to know each other in the context of the company
culture. But every single one of Jet Blue’s 600 reservations agents telecommutes from
home.

So where does Jet Blue’s great company culture come from? The answer is that work-
ers at home can be less isolated, closer in fact to the organization and its culture in an
online environment than in a forest of cubicles. Workers don’t need to smell each other
to get to know each other.

There is one thing, however, that makes the Jet Blue reservations office easier to
implement than most offices. Information being shared in its online reservations office
is more or less the same information that is available on Jet Blue’s public reservations
website — flight schedules, fares, available seats, etc. — not exactly sensitive inside infor-
mation.

We can safely assume that Jet Blue’s planned disclosures for the upcoming quarterly
conference call with securities analysts are discussed elsewhere.

That does not mean that such sensitive information is not shared online. Top man-
agement perhaps more than any other part of the organization, needs to share spread-
sheets and databases and projections right now, not when the CFO gets back from a trip
to Sydney, at which time the VP of Sales will be in Vienna anyway. The days when sharing
of important files could wait until everyone was in the same physical room are over. If
you are not sharing important information at all levels online, and if the online facility
cannot be flexibly expanded to include rooms where suppliers, distributors, partners
and important customers can meet and share files, then you have a problem.

Is your company prepared for a future where this is the norm? Is your competitor?
One way to get prepared is to adopt an operating system where telecommuters, includ-
ing those that handle confidential information, can work indoors, where that informa-
tion can be protected. Remember, there is no such thing as a “subnetwork” with such
niceties as network address translation (NAT) to protect your information when your
workers telecommute. Rather, there may be NAT but it’s their own network addresses
that are being translated, not yours. The end of your tunnel is outdoors.

Come InDoors

Dorren™ is a new operating environment that will allow you to build online real estate
facilities with ease, and at the same time will make your computer more useful. Dorren
“understands” the difference between InDoors and outdoors. It knows whether you
have authenticated yourself and whether you are in an authenticated online environ-
ment. It enhances the security and utility of the system for you.

The core of Dorren is not new at all; it’s a combination of elements that “know” what
is really required of building codes: Osmium-compliant PEN Component, identity from
Identity Reliability Component, and an occupancy permit that is issued in compliance
with the Building Codes Component.

360 THE INDOOR OPERATING SYSTEM

To make use of InDoor facilities you’ll need to enroll and obtain a Foundational
Certificate.

But for the time being, you can come InDoors without an Osmium-compliant oper-
ating system such as Dorren. You can make use of the other 11 components of the Quiet
Enjoyment Infrastructure without an InDoor operating system. Your employees can use
any browser that understands digital certificates, operating on any computer with any
operating system to get to a code-compliant online facility.

It will be compliant with current building codes, simply because we have to start with
what people already have. We call it the Montaigne principle, living with the living, a
necessary but uncomfortable compromise with dismal present realities. Over time the
codes will become more stringent, and at some point will require both hardware and

operating system compliance with the Osmium standards.

Why an Open Source Kernel for Dorren?

Reality can be counter-intuitive. Those who are familiar with open source and propri-
etary software know that open source products are often more secure than proprietary
ones. Bruce Schneier explains why78, using data from the Report of the Director of the
Administrative Office of the United States Courts on Applications for Orders Autho-
rizing or Approving the Interception of Wire, Oral, or Electronic Communications to

illustrate. The report notes that

1. Encryption of phone communications is very uncommon. Sixteen cases of en-
cryption out of 1,358 wiretaps is a little more than one percent. Almost no sus-
pected criminals use voice encryption.

2. Encryption of phone conversations isn't very effective. Every time law enforce-
ment encountered encryption, they were able to bypass it. | assume that local
law enforcement agencies don't have the means to brute-force DES keys (for
example). My guess is that the voice encryption was relatively easy to bypass.

These two points can be easily explained by the fact that telephones are closed
devices. Users can't download software onto them like they can on computers. No
one can write a free encryption program for phones. Even software manufacturers
will find it more expensive to sell an added feature for a phone system than for a
computer system.

This means that telephone security is a narrow field. Encrypted phones are expen-
sive. Encrypted phones are designed and manufactured by companies who believe
in secrecy. Telephone encryption is closed from scrutiny; the software is not subject
to peer review. It should come as no surprise that the result is a poor selection of
expensive lousy telephone security products.

78 “Encryption and Wiretapping,” by Bruce Schneier, Crypto-Gram, May 15, 2003.

QUIET ENJOYMENT 361

For decades, the debate about whether openness helps or hurts security has contin-
ued. It's obvious to us security people that secrecy hurts security, but it's so counter-
intuitive to the general population that we continually have to defend our position.
This wiretapping report provides hard evidence that a closed security design meth-
odology — the "trust us because we know these things" way of building security
products — doesn't work.The U.S. government hasn't encountered a telephone en-
cryption product that they couldn't easily break.

And then there is this, from The Register™:

Thomas Reed's At The Abyss recounts how the United States exported control soft-
ware that included aTrojan Horse, and used the software to detonate the Trans-Sibe-
rian gas pipeline in 1982.TheTrojan ran a test on the pipeline that doubled the usual
pressure, causing the explosion. Reed was Reagan's special assistant for National
Security Policy at the time; he had also served as Secretary of the Air Force from
1966 to 1977 and was a former nuclear physicist at the Lawrence Livermore labo-
ratory in California. The software subterfuge was so secret that Reed didn't know
about it until he began researching the book, 20 years later... Soviet agents had been
so keen to acquire US technology, they didn't question its provenance. “[the CIA]
helped the Russians with their shopping. Every piece of software would have an
added ingredient," said Reed to NPR'sTerry Gross last week...

Tools you can trust

...Closed source software vendors such as Oracle and Microsoft hardly need to be
reminded of the delicacy of the subject. A year ago China signed up for Microsoft's
Government Security Program, which gives it what Redmond describes as "con-
trolled access" to Windows source code. But the Windows source itself doesn't guar-
antee that versions of Windows will be free of Trojans. Governments need access
to the toolchain - to the compilers and linkers used to generate the code - as that's
where Trojans can be introduced. Without tools source, licensees are faced with the
prospect of tracing billions of possible execution paths, a near impossible task.

Until the closed source vendors open up the toolchain, and use that toolchain for
verifiable builds, this is one area where software libre will have a lasting advantage.

Relying upon software whose source code is not available for scrutiny is a risky thing
to do. The rash of spyware that people have been experiencing should be enough to

79 “Explosive Cold War Trojan Has Lessons for Open Source Exporters,” by Andrew Orlowski, The Register,
March 16, 2004.

362 THE INDOOR OPERATING SYSTEM

convince anyone of that. Someone has planted code in your computer or phone and it
could be sending anything to its masters — you’ll never know what. Software that is to
be relied upon must come from open sources.

Dorren’s Indoor Space

The first step in the path to widespread availability of Osmium-certified personal com-
puters and other information appliances will be the production of a universally-instal-
lable secure virtual machine (VM), which we call InDoors™. As the name implies, In-
Doors hosts the real estate — the collaborative facilities we have been discussing.

It is not a space that accommodates anyone who wants to do software development
work. Only code that is personally signed by an individual who is certified under the
standards of the Professional Licensing Component can operate within the virtual
machine, just as only certified architects and structural engineers can design physical
buildings. An identifiable individual needs to be professionally accountable for any
problems. Effectively InDoors makes the computer disappear.

A number of virtual machine technologies were considered as the basis for InDoors.
The most intriguing VM is the operating system Inferno from Vita Nuova Holdings Lim-
ited. Inferno is a derivative of Bell Labs’ Plan 9, which is an operating system designed
by many of the original developers of Unix. Inferno installs either as a standalone op-
erating system or as an application under any of a number of other operating systems,
including most versions of Windows.

Our real estate model tries to ignore physical and network-layer barriers, such as
routers and firewalls, and instead defines boundaries through the use of facilities defi-
nition files. In other words, if two computers are tightly coupled in a computer room in
Singapore, a computer in Denmark might be “closer” to one of them than the second
processor in Singapore is, if that is how the facilities description files define the facility.
The design of Inferno inherently supports such a structure.

Indeed, this particular virtual machine natively does what others are struggling to
find a way to do. “Grid computing” serves as the budget-building rallying cry among
vendors and customers attempting to retrofit existing systems to do what the inventors
of Inferno anticipated in its original design. Remember, that includes people who, hav-
ing invented Multics and Unix decades ago and having stayed decades ahead of the
pack, realized that the old expression “the network is the computer” would someday
really mean something. That someday is today.

While Inferno was actually forked from Plan 9 by Bell Labs, its development as a
robust operating system + virtual machine is largely the work of Charles Forsyth and
his team at Vita Nuova in York, England. Inferno and Plan 9 have themselves spawned
interesting indoorsy derivatives, most notably from a team led by Francisco Ballesteros
at Universidad Rey Juan Carlos in Madrid.

QUIET ENJOYMENT 363

Dorren will borrow from these brilliant open source developments, by involving op-
erating system and virtual machine developers who “grok” the advantages of building,
managing and using information facilities in the manner used by architects and con-
tractors and building inspectors and occupants in the world of physical buildings.

With Dorren, processors around a network are like cells in a body. Indoor spaces
are defined in “blueprints,” or small programs written in programming language such
as Limbo or Go. Dorren’s virtual machine manages the indoor spaces and is ultimately
responsible for the security of the facilities that it hosts or in which it participates.

The Walled Garden

The most secure building in the world should be located in a town or office park guard-
ed by an active security force. The perimeter of the yard of a residence should be con-
sidered a real boundary and should be supported by substantial security measures, even
though it is outdoors. We need Osmium compliance for the whole environment, in-
cluding the outdoor space that is within the perimeter of the yard or community where
we live or work.

The outdoor space, the walled garden, constitutes the operating system environment
where we run the applications that we depend upon, in spite of their vulnerabilities. We
can’t suspend our use of word processing, spreadsheets, presentation programs, data-
bases, while they are rewritten to work indoors. Unfortunately we will need to do our
solitary work at a park bench for awhile. For the next few years anyway we will need to
create our files outdoors and share them indoors.

At least we can put the park bench in a walled garden, that is, a traditional oper-
ating system that operates on top of Dorren’s virtual machine. Some candidates are
OpenBSD and Linux.

The Windows emulator called Wine and its commercial cousin Crossover Office en-
able you to run Microsoft Office on Linux. A number of software products implement
the Windows application programming interface and other elements of the Windows
environment to make that possible.

Better yet, the free Libre Office office suite provides almost everything that Micro-
soft Office provides, and its code is open for inspection, audit, and signing by an indi-
vidual code auditor, professionally licensed by the City of Osmio Professional Licensing
Department.

Integrated Cryptography
Any operating system that can properly use key pairs in an authentication process, and
establish a session key to carry on after authentication, should be usable to access a QEI-
based facility today. On the other hand, as we have noted, what good is the process if the
operating system itself is vulnerable?

The walled garden portion of Dorren should be as well protected as possible. It

364 THE INDOOR OPERATING SYSTEM

should work tightly with cryptographic hardware that is being introduced into comput-
ers and should implement the kind of crypto-integrity that is needed to gain the full
benefit of the PEN Component. When a secure operating system kernel and the PEN
Component are tightly integrated, we are talking about Osmium compliance.

As usual, Moore’s law and good software conspire to make old impossibilities pos-
sible. Today sound cryptographic processes can be built into everything. The lights no
longer dim when you try to use RSA or AES in desktop and laptop computers, and ef-
ficient elliptic curve cryptography has at last found acceptance in phones, tablets and
other ARM-based devices. The PEN Component of QEI assures us that pervasive digital
signatures from reliable identities and pervasive encryption are readily available to both
InDoor spaces and walled garden spaces.

Popularizing Dorren

Open source operating systems and applications have gained significant share of in-
stallations on servers and embedded clients, but negligible penetration on desktops.
The most significant obstacle has been the fact that open source committer teams and
their broader communities are quite busy with development work and don’t have the
resources to appeal to and support new users. Often they get irritated by questions from
new users who have not taken the trouble to read the documentation. Being told to go
away and read the manual does not win friends for open source.

Of course there is a major difference in the set of assumptions. At one extreme is the
community of OpenBSD committers and users, members of which can be quite blunt
about the fact that they don’t care whether they attract new users or not. At the other
end is the user who is used to being treated as a customer and has not digested the fact
that the product was provided by volunteers.

While the committers ought not be distracted by making a new, popular version, it
makes no sense to have literally hundreds of millions of computer users putting up with
insecure, unstable, buggy, manipulative, hidden-agenda-laden operating systems when
a better alternative is available.

Who’s going change that? Who's going to hold the hands of people who are accus-
tomed to Windows because that is what came with the computer they purchased at Best
Buy, and who rely upon others for anything related to configuration and networking?
What kind of organization is built upon the premise that the user is the most important
person in the world?

Of course that is practically the definition of a successful, customer-focused commer-
cial enterprise. Commercial enterprises provide service to new users while distracting
the committers only long enough to notify them of money being sent, and perhaps to
make an occasional request for a special feature in the kernel.

Being able to do whatever you want with a piece of software, and giving back to the
community of developers when you add code to their work, is what open source is all

QUIET ENJOYMENT 365

about. Building a commercial product from open source components, a la Red Hat or
Apple, falls within the being-able-to-do-what-you-want part. At the same time, the pro-
cess must have integrity.

Tim O’Reilly once noted that “anyone who puts a small gloss on a fundamental tech-
nology, calls it proprietary, and then tries to keep others from building on it, is a thief.”
That’s an extreme of the sort of thing we want to avoid. A commercial enterprise should
add value to open source by researching what customers are likely to want and need,
investing in the integration of components, building an audience education effort (e.g.
by publishing books for wide audiences), marketing and brand-building, providing a
means by which customers can get service and support, and helping open source de-
veloper groups with user support services, feedback, and a portion of the product’s
earnings.

Putting It All Together

Dorren will support all the QEI Components and will serve as a complete software plat-
form for most users. It is a client system that can easily be transformed into a server
if the machine has the proper capacity and configuration and its user knows how to
run a server. A facility (building, office suite, residence, fraternal meeting hall) can be
“served” from a computer that is not configured as a server; however, for the facility to
be readily available to its occupants it will be best to operate it from a bona fide server.
Most importantly, Dorren knows whether at any moment those occupants are indoors
or outdoors, and behaves accordingly.

Dorren does not know the difference between a browser and a desktop. The U.S.
Justice Department fretted over Microsoft’s integration of the browser into Windows.
But everyone else knows that integration is what users desperately need. Users crave a
client package that knows how every component works, where surprises are made near-
ly impossible, where plug and play is reality. But everyone worries about the power that
such a desktop gives to the company that controls it.

Your Dorren machine will be under your control. Dorren is not only secure and
robust and reliable, it is honest. It has no hidden agendas lurking inside hidden pieces
of code. If you use your copy of Dorren to host a collaborative environment — that is,
a building — then in order for it to be certified as secure the building must have an oc-
cupancy permit. The process by which that is obtained is open and public and designed
to resemble as closely as possible the process by which an occupancy permit is obtained
for a physical building.

You Can Fill the Power Vacuum

People love to debate whether Windows will always rule the desktop. The demise of the
platform that totally dominates a space is a repeated theme in information technology.
It is not a design issue, not a religious issue; it has nothing to do with whether or not

366 THE INDOOR OPERATING SYSTEM

you like the incumbent. It just happens, in the same way an epidemic subsides for no
apparent reason. IBM experienced it; DEC experienced it. Next it will be Microsoft’s
turn. We've all heard that nature abhors a vacuum. What will replace Windows?

Dorren will.

When will all this be reality? Sooner than open source development schedules would
seem to indicate. The pace of open source development suffers tremendously from its
economics. Too often, a brilliant piece of software gets stuck at version 0.93 because its
key developers need to shift their focus to something that will more immediately put
food on the table.

Dwell for a moment on the similarities between the process of designing and build-
ing software and designing and building buildings. Then dwell some more on the mag-
ic ingredient in the latter that ensures that the professionals involved in it get paid for
their hard work.

In the next chapter we’ll show how the Professional Licensing Component adds
sound economics to the process of open source development, so those who put heart
and soul into the development and deployment of Dorren can be well compensated.

When will Dorren be a commonplace reality on information appliances around the
world? Perhaps it’s up to you. With superior design and code heritage, the best talent,
and new developer economics as a starting point, join us as we go forward and ensure
that the best horse is ready to win this race.

To see the current state of development of

The InDoor Operating System

...and to learn how your

experience with distributed
OS protocols such as P9P

might be put to use in its development, please go to the InDoor
Operating System Development Office at osmio.ch

